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We present a variational approach based on the string picture to analyze the internal structure and dispersion
of spin polarons with different symmetries in an antiferromagnet. We then use this to discuss the properties of
underdoped cuprate superconductor within the “doped insulator” picture. The theory explains the remnant
Fermi surface for the undoped compounds, as well as hole pockets, Fermi arcs, high-energy pseudogap, and the
midinfrared band in doped materials. Destructive interference between the phases of a photohole near � and
the internal phases of the Zhang-Rice singlet combined with our theory moreover explains the “waterfall”
phenomenon.
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I. INTRODUCTION

Since the discovery of high-temperature superconductiv-
ity �HTSC� in doped antiferromagnetic �AF� insulators, the
research on that phenomenon concentrates to a great extent
on the properties of single-particle-like excitations in such
systems. It is also obvious that the microscopic mechanism
of HTSC should hinge on the interaction between quasipar-
ticles. At half-filling the Hubbard model, which is a generic
model used to describe strongly correlated systems, is an
insulator for large enough U / t �Ref. 1� whereas for low elec-
tron density the model is expected to be a Fermi liquid with
a Fermi-surface volume in accordance with the Luttinger
theorem for any U / t.2 With increasing doping one might
therefore expect a phase transition from a “correlation domi-
nated” phase near half-filling to a Fermi-liquid phase for low
density. The key property of the correlation dominated phase
thereby is the splitting of the physical electron into the two
Hubbard bands which correspond to fermionic holes and
double occupancies moving in a “background” of singly oc-
cupied sites, whereby the electrons forming the background
retain only their spin degrees of freedom. This—and not a
half-filled Fermi surface—is the picture underlying all suc-
cessful theories for the angle-resolved photoemission spec-
troscopy �ARPES� data3 obtained in insulating
compounds.4–12 The question then is to what extent these
Hubbard bands can be doped before the two-band structure
collapses, the spin background “melts” into a Fermi sea, and
the Luttinger Fermi surface is regained. The key property of
this “doped insulator” phase should be a Fermi surface with
a volume proportional to the number of doped holes because
these are the only mobile fermions.

ARPES on cuprate superconductors has produced a
wealth of information13 although it has proven difficult to
extract a consistent picture. From spectra taken near optimal
doping it was concluded that ARPES shows evidence for a
“large” Fermi surface consistent with the Luttinger theorem
and band calculations13 which would imply that the doped
Hubbard bands never exist. Surprisingly enough, however,
insulating compounds such as Sr2CuO2Cl2 seemed to show a
very similar Fermi surface as well—which has been termed
the “remnant Fermi surface.”14 ARPES spectra from insula-

tors show a band which disperses toward lower binding en-
ergy and then rapidly looses weight just as if it would cross
a Fermi level. The only possible explanation for this phe-
nomenon is a strong and systematic variation of the spectral
weight of the conduction band which drops to near zero
abruptly at a line in k space which roughly coincides with
the noninteracting Fermi surface. One can give simple argu-
ments why such a behavior is to be expected.15 Since there is
no reason why such a strong variation of spectral weight and
bands with almost no spectral weight should occur only in
insulators, one should be cautioned that Fermi-surface maps
for doped compounds may not show the full picture either.

In the underdoped compounds the upper Hubbard band,
while rapidly loosing spectral weight, still can be clearly
resolved.16 ARPES shows rather structureless spectra which
are usually interpreted in terms of a “high-energy feature”
and a “leading-edge shift” or, alternatively, high energy and
low-energy pseudogaps.13 In any case there is definitely no
large Fermi surface, instead Fermi-surface maps show
“Fermi arcs.” Bearing in mind the remnant Fermi surface in
the insulators suggests to interpret these arcs as being the
inner part of a hole pocket centered on � �

2 , �
2 � with the part of

the pocket facing �� ,�� having too small spectral weight to
be seen in ARPES. Assuming that the electronic structure in
the underdoped compound can be described in simplest ap-
proximation as holes doped into the quasiparticle band of the
insulator moreover would give an explanation for the high-
energy pseudogap—the dispersion of the high-energy
feature—in that it simply reflects the hole dispersion in the
insulator.13 Such a “strict” rigid-band picture would not ex-
plain the low-energy pseudogap or the temperature and dop-
ing dependence of either high- or low-energy pseudogap. On
the other hand the closing of the pseudogap with increasing
doping can be seen already in cluster simulations17 and it has
been pointed out there that the mechanism may be an effec-
tive downward renormalization of the t� and t� terms due to
decrease in the spin-correlation length. Moreover, the low-
energy pseudogap by its definition in terms of the leading-
edge shift has no immediate connection with a dispersion
and may be determined, e.g., by T-dependent linewidths as
discussed by Storey et al.18

The compound Ca2−xNaxCuO2Cl2 shows rather clear evi-
dence for the doped insulator picture19 in that the dispersion
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in the doped case is virtually identical to that in the undoped
compound and even the part of the quasiparticle band facing
�� ,�� may have been observed. Very recently ARPES ex-
periments seem to have provided direct evidence for hole
pockets in La1.48Nd0.4Sr0.12CuO4,20 with the part of the pock-
ets facing �� ,�� indeed having small spectral weight—as
one would have expected on the basis of the remnant Fermi
surface.

It had been noted early on21 that hole pockets with a vol-
ume proportional to the hole concentration would explain the
scaling of the low-temperature Hall constant with hole con-
centration in the underdoped materials22,23 and that the ap-
parent discrepancy between the “small Fermi surface” sug-
gested by transport measurements and the “large Fermi
surface” seen in ARPES may be due to a systematic variation
of the quasiparticle weight along the hole pocket.24 While the
recent discovery25–27 of Shubnikov–de Haas oscillations in
some underdoped compounds initially seemed to provide
strong evidence for hole pockets, the finding that the oscil-
lations are likely caused by electronlike rather than holelike
pockets28 has complicated matters again.

Lastly, exact diagonalization studies of the t-J model pro-
vide clear evidence that the Fermi surface for hole dopings
around 10% takes the form of hole pockets.29,30 Careful
analysis of exact diagonalization results shows that in the
single particle the spectral function for the doped t-J model
is quite consistent with rigid-band filling of the quasiparticle
band seen at half-filling, provided one takes into account the
formation of hole pairs.24 By calculating the spectral func-
tion for dressed hole operators31 rather than the bare electron
operators can moreover be shown that the quasiparticles in
the doped system have very nearly the same internal struc-
ture as in the undoped one.32

Here we take the point of view that the underdoped re-
gime in high-temperature superconductors precisely corre-
sponds to the doped insulator phase. We show that many
properties of the underdoped phase—the remnant Fermi sur-
face, the Fermi arcs, the high-energy feature seen in ARPES,
and the midinfrared band seen in the optical conductivity—
find a simple and natural explanation in the dispersion and
internal structure of the quasiparticles which correspond to
holes heavily dressed by spin excitations. Since there are
indications that the heavily overdoped phase is essentially a
Fermi liquid this would imply that the phase transition from
the correlation dominated phase to the Fermi-liquid phase
occurs at optimal doping. This would then be a quantum
phase transition where none of the two phases has any kind
of order—rather they differ in the topology and volume of
their Fermi surfaces. An indication of this transition can in
fact be seen in the dynamical spin and density correlation
function obtained by exact diagonalization of small clusters.
In the underdoped regime spin and density correlation func-
tions are very different and the density correlation function
takes the form of extended incoherent continua.33 This form
of the density correlation function can be explained quanti-
tatively within the string picture for a single hole.34 For dop-
ing levels higher than optimal, spin and density correlation
functions become similar and can be explained well as
particle-hole transitions across an essentially free-electron-
like Fermi surface.35

While a theory for such a transition would be highly de-
sirable but very challenging the present paper has a more
modest goal: we want to show that many features of undoped
and underdoped cuprates can be explained by a very simple
theory which assumes continuity with the insulator. The cal-
culation will be performed in the framework of the t-J
model36,37 extended by terms enabling hopping to second
and third nearest neighbors �NNs� with hopping integrals t�
and t�, respectively.38,39 We use standard values t=0.35 eV,
t�=−0.12 eV, t�=0.08 eV, and J=0.14 eV chosen so as to
reproduce the measured Fermi surface of hole doped cu-
prates for high doping levels.

II. CONSTRUCTION OF LOCALIZED BASIS STATES

Since we want to study the doped insulator we consider
the motion of a single hole in an antiferromagnetically or-
dered “spin background.” All processes analyzed in the fol-
lowing actually require only short-range antiferromagnetic
correlations—one may therefore expect that hole motion in a
state with short-range antiferromagnetic order but no long-
range order will involve very similar processes so that, e.g.,
the internal structure of the quasiparticles and the dispersion
relation of a hole should not change drastically. The con-
struction of spin-polaron �SP� states including the excited
states was performed in several earlier publications.40–44 In
order to make this paper self-contained we will now briefly
repeat that construction. For definiteness we will assume that
a ↓ spin has been removed from the system and study the
motion of the resulting hole. We denote the ↓ sublattice by A.

To begin with we define H0=Ht+HIsing to be the sum of
the nearest-neighbor hopping �t and the longitudinal part of
the Heisenberg exchange,

Ht = − t �
�i,j�,�

�ĉi�
† ĉj� + H.c.� ,

HIsing = J�
�i,j�

�Si
zSj

z −
ninj

4
� .

H0 is frequently referred to as the t-Jz model. In a first step,
we seek approximate eigenstates of H0 which are localized
due to the string effect.

The mechanism of the string effect is shown in Fig. 1. By
creating a hole in the Néel state—i.e., the ground state of
HIsing—at site i and acting repeatedly with the hopping term
we generate a basis of string states �Pi�, where Pi
= �i , j , . . . ,n� is shorthand for the sites i , j , . . . ,n visited by
the hole. All spins on these sites have been displaced by one
lattice spacing and thus are inverted relative to the Néel or-
der.

All �Pi� are eigenstates of HIsing. Taking the energy of the
string with length 0, i.e., the bare hole as zero in energy and
denoting � as the length of the string—i.e., the number of
shifted spins—the eigenvalue is

E� =
J

2
�2� + 1� . �1�

This is exact for ��2 and is true for “most” longer strings as
well. For simplicity we assume Eq. �1� to be true for any
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string. This implies that the hole is trapped in a linearly
ascending potential and all eigenstates of H0 are localized.
The main deviations from Eq. �1� occur for “loops” as dis-
cussed by Trugman4 which, in fact, lead to hole propagation
even in the t-Jz model. Such loops pose no fundamental
problem for the present formalism and can be dealt with by
introducing the concept of “irreducible paths” as discussed in
detail in Ref. 40.

Next we note that by acting with a point-group operation,
which leaves the initial site i invariant, the string states �Pi�
are transformed into one another. We can therefore define
linear combinations of the �Pi� which transform like the basis
states of the irreducible representations of C4v under these
point-group operations. Then we make the following ansatz
for a localized eigenstate of H0:

�	i
�o,m�� = �

Pi


Pi

�o,m��Pi� , �2�

where o� 	s , px , py ,dx2−y2 ,dxy ,¯
 denotes the symmetry or
“orbital character” of the state and m labels the excitation
number for a given symmetry. In keeping with Eq. �1� we
moreover assume that each coefficient 
Pi

�o,m� can be factor-
ized into a sign �Pi

�o�—which plays the role of an “angular
wave function”—and a “radial-wave function” 
�

�o,m� which
depends only on the length of the string,


Pi

�o,m� = �Pi

�

�o,m�. �3�

For an A1 �s-wave� state the sign �Pi
is obviously uniform

for all paths. For an E �p-wave� or B1 �dx2−y2-wave� state �Pi
is determined by the direction of the first hop away from the
site i as shown in Fig. 2. The string of length 0, i.e., the bare
hole at site i, is invariant under all point-group operations
and hence has nonvanishing weight only in the s-like state—
this implies that E and B1 states are higher in energy than the

A1 state because they are composed of strings with length
�1 and hence a minimum of three frustrated bonds. For the
two remaining representations A2 �g wave� and B2 �dxy wave�
it can be shown that only strings with a minimum length of 2
have nonvanishing weight in the corresponding SP states—
these states therefore are even higher in energy and we omit
them. For each symmetry sector o we can now set up the
Schrödinger equation,

H0�	i
�o,m�� = E�o,m��	i

�o,m�� , �4�

thereby assuming Eq. �1� and solving for the eigenenergies
E�o,m� and the coefficients 
—this is explained in Appendix
A. As expected for a linearly ascending potential, the 
’s are
rapidly decreasing with increasing length of the string even
for the physical parameter range t /J�3. It turns out the
Schrödinger equation for the coefficients 
 for the dx2−y2 SP
is identical to that for the p-like ones. To shorten the notation
we call the coefficients 
�

�s,0� for the lowest s-like SP 
� and
instead of those for the p-like SP, 
�

�p,0�, and dx2−y2-like SP,

�

�d,0�, we use 
�� /�2 and 
�� /2, respectively.

III. EFFECTIVE MULTIBAND MODEL FOR SPIN
POLARONS

So far we have found SP states Eq. �2�� which form a set
of approximate localized eigenstates of H0 at each of the
sites of the sublattice A. Next we note that the remaining part
H1 of the tJM—which comprises the transverse part of the
Heisenberg exchange and the hopping terms �t� , t�—has
nonvanishing matrix elements between SP states centered on
neighboring sites i and j. One important mechanism leading
to such a matrix element is the truncation of the string shown
in Fig. 3. By flipping the first two spins of the defect string
the starting point of the string is shifted to a second or third
nearest neighbor while the length of the string is reduced by

2. Since the coefficients 
Pi

�o,m� and 
P�j

�o�� of the initial and
final strings are known by solution of Eq. �4� and the
strength of the spin-flip term is J /2, the corresponding ma-
trix element is easily evaluated. Similarly, the hopping terms
�t� , t� allow for the hopping of the bare hole between the
sites of one sublattice �see Fig. 3�. In addition there is the
“loop hopping”4 and actually a wide variety of additional
processes, which are discussed in Appendix A.

Assuming that the matrix elements are known we define
Fourier transforms,

i i

i i

(a) (b)

(c) (d)

FIG. 1. �Color online� The mechanism of the string effect.
Slanted crosses represent links with the contribution to the Ising
part of the exchange energy higher by J /2 as compared to the Néel
state. �b� A string state obtained by a single move of the hole cre-
ated at site i. �c� and �d�� States obtained, respectively, by two and
three consecutive moves.

��

�

�

�� �

��

�

�

�

0

0

0 0

(a) (b) (c) (d)

FIG. 2. Dependence of the sign of a given path on the direction
of the first move for the �b� dx2−y2-wave SP, �c�px-wave SP, and �d�
py-wave SP. �a� For completeness the schematic representation for
the s-wave SP has also been shown.
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�	���k�� =� 2

N
�
j�A

�	 j
���e−ik·Rj , �5�

where = �o ,m�. Next we make the linear combination of
atomic orbitals �LCAO�-like ansatz for a propagating single-
hole state,

��l�k�� = �


v
�l��k��	���k�� , �6�

which leads to a generalized eigenvalue problem of the form

Heff�k�vl�k� = El�k�Oeff�k�vl�k� , �7�

where the Hamilton and overlap matrices are given by

H��� = ��E
�� + T����k� , �8�

O��� = �� + O����k� , �9�

and we have introduced the Fourier transform of

Tii�
��� = �	i

���H1�	i�
���� , �10�

Oii�
��� = �	i

���	i�
���� . �11�

All these matrix elements can be expressed in terms of the
coefficients 
l

�� as discussed in Appendix A. Once these ma-

trix elements are calculated we readily obtain the band struc-
ture for the spin polarons.

To conclude this section we briefly discuss the relation-
ship with previous work. Several authors have studied hole
motion in an antiferromagnet by calculations within a string
basis.4,45–47 The difference is that the diagonalization of H0
leads to a considerable reduction in basis states in that high
lying eigenstate of H0 that are eliminated from the very be-
ginning. The matrices to be diagonalized in the present work
are 4�4 or 10�10—which is very small compared to the
matrix dimensions in Refs. 4 and 45–48. Moreover the
LCAO-like scheme makes it easier to extract a physical pic-
ture. Another frequently applied approach is the self-
consistent Born approximation.7–12,49–51 The single-hole
wave function associated with this approximation actually
can also be interpreted as a superposition of string states
once the Fourier-transformed version of the wave function in
Ref. 54 is converted into real space. This explains why the
results, e.g., for the dispersion of a single hole are practically
identical.

IV. PHOTOEMISSION SPECTRA AND FERMI SURFACE

ARPES gives the information on the one-electron re-
moval part of the spectral function defined, at T=0, as

A−�k,�� = −
1

�
Im�	AF�ck,↓

† 1

� − H + i0+ck,↓�	AF� . �12�

�	AF� in Eq. �12� represents the half-filled ground state in
which the photoemission process takes place. This approach
is based on the so-called three-step model of
photoemission.52 A more sophisticated approach based on the
single-step model53 is beyond the scope of this paper. Since
we assume that the rigid-band scenario is applicable to cu-
prates in the low doping range, we expect that the conclu-
sions drawn from that analysis are also to some extent appli-
cable to doped systems.

As a first step we approximate the resolvent operator ��
−H+ i0+�−1 by

1

� − H + i0+ → �
l,k

��l�k����l�k��
� − El�k� + i0+ , �13�

i.e., we restrict the single-hole states to the coherent super-
position of SP states Eq. �6��. Next, we have to choose an
approximate ground state �	AF� of the Heisenberg antiferro-
magnet. The simplest choice would be the Néel state ��N�
but in this way we would miss an important mechanism for a
k-dependent quasiparticle weight, namely, the coupling of
the photohole to quantum spin fluctuations. By generating a
hole in the Néel state we can obtain only a bare hole, i.e., the
string of length 0. In the presence of quantum spin fluctua-
tions the photoemission process can also generate strings of
length 1 or 2 �see Fig. 4�. Since in such a process the hole is
created not at the central site i of the SP state—which deter-
mines the phase factor e−ik·Ri in the Bloch state Eq. �5��—
the photoemission matrix element becomes k dependent.
Generally speaking the fact that the SP quasiparticles extend
over more than one unit cell in real space results in a “struc-

j

i

j

i

(a) (b)

j

i

j

i

(c) (d)

j

i

j

i

(e) (f)

FIG. 3. �Color online� �a�→ �b�: a string of length 2 starting at i
is truncated to a string of length 0 at j by the transverse part of the
Heisenberg exchange. �c�→ �d�: a string of length 3 is reduced to
one of length 1. �e�→ �f�: a bare hole at site i �string of length 0� is
transported to j by t� hopping.
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ture factor” which varies within the first Brillouin zone in k
space. As will be seen below, this very k dependence is the
source of the remnant Fermi surface. In order to capture this
effect we use simple first-order perturbation theory for the
quantum spin fluctuations and set

�	AF� = ��N� −
1

3 �
�i,j�

�Si
+Sj

− + H.c.���N� . �14�

Since second-order perturbation theory gives quite a good
estimate for the ground-state energy of the Heisenberg anti-
ferromagnet, we expect that the probability for coupling to a
quantum fluctuation with the electron annihilation operator is
described quite well by Eq. �14�.

Since a quantum fluctuation in the initial states simply
gives rise to an extra factor of −1 /3 we immediately obtain
the following expressions for the photoemission matrix ele-
ment m��= �	↓

���k��ck,↓�	AF�:

m�s��k� = 
0 −
2
1

3
cos�kx� + cos�ky��

−
4
2

3
	cos�kx� + cos�ky��2 − 1
 ,

m�px��k� =
�2i
1�

3
sin�kx� +

2�2i
2�

3
sin�kx�cos�kx� + cos�ky�� ,

m�d��k� = −

1�

3
cos�kx� − cos�ky��

−

2�

3
cos 2�kx� − cos 2�ky�� . �15�

Using these matrix elements we can now compute the spec-
tral density from the normalized SP eigenfunctions.

If we want to compare to experiment, however, there is
yet another important effect we need to take into account,
namely, the coupling of the photohole to charge fluctuations.
We may expect that the ground state of the system has not
only quantum spin fluctuations but also charge fluctuations,
i.e., an admixture of pairs of holes and double occupancies
with a density ��t /U�2. By annihilating an electron on a
doubly occupied site it is possible to create a string state with
an initial site i by annihilating an electron at a site different
from i. Again, this will give rise to a k dependence of the
spectral weight. Such processes actually are not described by
the tJM, but since it is rather easy to discuss them we do so.
We treat the charge fluctuations in perturbation theory, i.e.,
we replace

�	AF� → �	AF� +
t

U
�
�ij�

�
�

d̂i�
† ĉj���N� , �16�

where d̂i�
† =ci�

† ni�̄. The hopping terms �t� , t� do not produce
charge fluctuations in the Néel state. Denoting �= t /U
=J / �4t� we get the following correction to the matrix ele-
ment m�s�:

m�s��k� = 2�
0cos�kx� + cos�ky�� − 4�
1, �17�

whereas the corrections to m�px� and m�d� are zero. It might
appear that the corrections due to charge fluctuations are
quite small, being anyway �t /U. On the other hand, by cou-
pling to charge fluctuations a bare hole at site i can be cre-
ated by actually annihilating an electron on any of its z
neighbors. By changing from k= �0,0� to k= �� ,�� the cor-
responding contribution to the photoemission matrix element
thus changes from zt /U to −zt /U and since this has to be
added before squaring the matrix element the impact of the
charge fluctuations is, in fact, quite strong. The way in which
we are treating charge fluctuations would be adequate for a
simple one-band Hubbard model, which is not the proper
model for cuprate superconductors. A very similar calcula-
tion for the more correct two-band model has been done by
Eroles et al.55

In a first calculation we want to study the low-energy-
band structure. In the LCAO-like ansatz �6� we first restrict
ourselves to the lowest state �i.e., m=1� for each symmetry o
so that we have to solve 4�4 matrices �we have o
� 	s , px , py ,dx2−y2
�. The resulting band structure is shown in
Fig. 5. Using the photoemission matrix elements Eq. �15��
the photoemission spectrum can be calculated �see Fig. 6�. In
addition to the familiar quasiparticle band discovered in
Sr2CuO2Cl2 by Wells et al.,3 which has been discussed ex-
tensively in the literature,5–12,38,39 there is a second band with
slightly lower intensity which has predominant p-like SP
character and runs essentially parallel to the original band.

i i

(a) (b)

i i

(c) (d)

i i

(e) (f)

FIG. 4. �Color online� �a�→ �b�: creation of a bare hole at site i
from the Néel state. �c�→ �d�: creation of a string of length 1 start-
ing at i from the Néel state+quantum fluctuation. �e�→ �f�: creation
of a string of length 2 starting at i from the Néel state+quantum
fluctuation.
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Indeed such a second band with weaker intensity which fol-
lows the main band is seen in exact diagonalization of small
clusters �see, e.g., Fig. 1 of Ref 17�. These higher lying SP
bands have small spectral weight and therefore could be hard
to observe in ARPES—even more so because the ARPES
spectra in the undoped compound are likely to show strong
lattice polaronic effects.56 Nevertheless, it may be that a
higher lying band—possibly the first p-like band—has been
observed by Ronning et al.57 in the insulating cuprate
Ca2CuO2Cl2. There a second weak band has been observed
at roughly 0.5 eV below the quasiparticle band. Ronning et

al.57 interpreted this as part of a wide band which reaches �
at a binding energy below 2 eV. As can be seen in Fig. 5,
however, this band �triangles� has a dispersion that is quite
comparable to that of the quasiparticle band �circles�. More-
over, as will be discussed below, we believe that the band
portion observed in Ca2CuO2Cl2 around � at binding ener-
gies around 2 eV is an example of a “1 eV peak” as observed
in Sr2CuO2Cl2 �Ref. 58� and thus unrelated to the band
marked by triangles. While the higher lying bands may be
hard to observe in ARPES optical interband transitions be-
tween the main band and these higher lying bands produce
finite-frequency optical conductivity which may correspond
to the mid-IR bands, again in the actual compounds this may
be complicated by polaronic effects. Another feature which
can be seen in Fig. 6 and which is quite consistent with
experiment is the sharp drop of the spectral weight of the
quasiparticle band which occurs whenever one passes
�roughly� through the Fermi surface of the noninteracting
half-filled, i.e., the remnant Fermi surface. It is caused by the
k dependence of the photoemission matrix elements Eqs.
�15� and �17�� and therefore reflects the interplay of spin and
charge fluctuations in the spin background and the internal
structure of the quasiparticle. Assuming that the structure of
the quasiparticles remains roughly the same in a spin back-
ground without long-range order but short-ranged antiferro-
magnetic correlations—as is suggested by exact
diagonalization32—the k dependence of the photoemission
matrix element should be similar for finite doping. This
would provide an immediate explanation for the Fermi arcs
seen in the underdoped compounds. To make this more quan-
titative we have computed the Fermi contour by filling up the
single-hole dispersion according to the Pauli principle—see
Fig. 5—and showed it in the upper panel of Fig. 7. The lower
panel shows the spectral weight of the quasiparticle band as
a function of the Fermi-surface angle. The hole pocket is
actually more elongated along the �1,1� direction than along
the antiferromagnetic zone boundary. It should be noted,
however, that this is calculated at half-filling where �� ,0� is
far from the valence-band top due to the t� and t� terms �see
Fig. 5�. On the other hand it is known that upon doping the
band portions near �� ,0� move upward.13 It has been sug-
gested that decreasing antiferromagnetic spin correlations
leads to an effective downward renormalization of t� and t�
with doping17 so that for finite doping the pocket is probably
elongated more along the antiferromagnetic zone boundary
as observed by Chang et al.20 This effect cannot be repro-
duced by our simple theory, however. Another phenomenon
which would find a very simple explanation in an approxi-
mate rigid-band behavior upon doping is the pseudogap.13

The upper part of Fig. 8 shows again the hole pocket and a
contour in k space which extends the “front part” of the
pocket into a free-electron-like Fermi surface. The
pseudogap is usually defined by measuring the leading-edge
shift or the dispersion of the high-energy feature along such
a contour. The lower part of Fig. 8 then shows the energy of
the quasiparticle band along this “Fermi surface” plotted ver-
sus the Fermi-surface angle �. There is the characteristic flat
part near �=0 which originates because the contour initially
follows the hole pocket and then the d-wave-like downward
dispersion as the free-electron-like Fermi surface departs
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FIG. 5. �Color online� Band structure obtained by solving the
eigenvalue problem Eq. �7��. Also shown is the dispersion of bands
observed by Ronning et al. �Ref. 57� in Ca2CuO2Cl2 �circles and
triangles�. A sample Fermi level of a doped system has been chosen
as the zero of energy. Vertical arrows label possible optical transi-
tions of a hole at the bottom of the band.
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FIG. 6. Photoemission spectrum for the half-filled model corre-
sponding to the band structure Eq. �5��. In the left panel the spec-
tral weight is computed using only the quantum fluctuation correc-
tion Eq. �15��; in the right panel the charge-fluctuation correction
Eq. �17�� was used as well.
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from the hole pocket. It should be noted that this would
explain only the high-energy pseudogap. On the other hand
the low-energy pseudogap, being defined in terms of a
leading-edge shift, has no immediate connection with a dis-
persion relation and will almost certainly depend also on the
temperature and momentum dependent linewidth of the qua-
siparticle band.18 In fact, assuming a lifetime broadening
��k�� �E�k�−�� would immediately explain also the low-
energy pseudogap. As noted above the pocket in Fig. 8 is too
much elongated in �1,1� direction. However, the effective
downward renormalization of t� and t� in the doped com-
pounds would lead to a pocket that is more elongated along
the magnetic zone boundary. In any way, however, if one
would go along the inner part of the pocket near �1,1� and
extend this to a free-electron-like Fermi surface as in the top
part of Fig. 8, one will always see a dispersion as shown in
the bottom part of Fig. 8.

Finally we want to discuss the spectral function on a
larger energy scale. To keep the discussion simple we keep
only s-like SP states in Eq. �6� but include excited s-like
states with m=1 , . . . ,10 �extending this to m=1, . . . ,20
produces no visible change in the spectra—this is one of the
beneficial effects of the “prediagonalization” of H0�. More-
over we retain only the matrix elements due to string trun-
cation and the t� and t� terms, i.e., processes of the type
shown in Fig. 3. However, we do include the full photoemis-
sion matrix elements Eqs. �15� and �17��. The resulting
spectral function is shown in Fig. 9. In addition to the qua-

siparticle band—which is essentially identical to the one of
the more exact calculation shown in Fig. 6 above—there
now appear additional bands at higher energy. In reality these
“bands” probably are not well-defined states because they are
already high in energy. Rather these states are probably
strongly broadened due to interaction with magnons and
phonons and may have only the character of “resonances.”
Whereas the quasiparticle band is composed mainly of the
lowest s-like SP states for motion of the hole trapped in the
linearly ascending potential, the higher lying bands corre-
spond to excited levels of the trapped hole. The relatively
high intensity of these states may be understood by noting
that the coefficients 
�

�m� for the excited states m�1 will
have extra nodes as functions of � and if the signs of the 
�

�m�

better match the prefactors in Eq. �15� the matrix element
may even be larger for these higher lying states.

The spectral function in Fig. 9 is qualitatively similar to
the result of a recent calculation by Bonča et al.47 which was
performed in a string basis with several million basis states.
As already noted the main difference between the present
calculation and the one by Bonča et al.47 is in the fact that
the prediagonalization of H0 by solution of Eq. �4� leads to a
quite massive reduction in irrelevant degrees of freedom in
the present scheme—as noted above, the matrix diagonalized
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FIG. 7. Top: Fermi surface obtained for 10% hole concentration
by rigid filling of the lowest SP band. Bottom: spectral weight of
the corresponding SP band along the Fermi surface as a function of
the angle 
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FIG. 8. Top: Fermi surface obtained for 10% hole concentration
by rigid filling of the lowest SP band and a contour obtained by
extending the “inner part” of the pocket to a free-electron-like
Fermi surface. Bottom: energy relative to Fermi energy of the SP
band forming the pocket along the free-electron-like Fermi surface
as a function of Fermi-surface angle.
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here is 10�10. Despite this simplification not only the dis-
persion of the topmost peak but also the fact that the high-
energy part “widens” as one moves away from �0,0� is re-
produced. On the other hand, it should also be noted that the
spectral weight shown in Fig. 9 cannot directly be compared
with Ref. 47 because we are taking into account the correc-
tions of the ARPES matrix element due to quantum spin
fluctuations in the half-filled ground state which are not in-
cluded there.

V. ELECTRONIC STRUCTURE AT HIGHER BINDING
ENERGIES

Recently a number of studies have revealed additional
structure in the ARPES spectra at higher binding energies.
Ronning et al.57 found that in the insulating cuprate
Ca2CuO2Cl2 the quasiparticle band seems to “fade away” as
the � point is approached—a phenomenon which is common
to all cuprates. The spectral weight that is missing from the
quasiparticle band then appears at �1.5 eV below the maxi-
mum of the quasiparticle band in the form a high-intensity
band which has a dispersion that is remarkably consistent
with local-density approximation �LDA� band-structure cal-
culations. More precisely this is the antibonding band of
Cu 3dx2−y2 and O 2p� orbitals—whereby it has to be kept in
mind that at � these two orbitals do not hybridize due to
parity, so that in an LCAO-like description these bands have
pure oxygen character at � and—by continuity in k—very
small Cu 3d admixture its neighborhood.

Similar behavior was observed in doped cuprates as
well.59–63 In addition, the so-called waterfall phenomenon is
observed. Moving, e.g., along the �1,1� direction toward �

the quasiparticle band first disperses away from the Fermi
edge but then—at a momentum of approximately
� �

4 , �
4 �—seems to bend down sharply and drop almost verti-

cally down to an energy of �1 eV below the Fermi edge.
The apparent vertical part of the dispersion—the
“waterfalls”—can be seen as a hump in momentum distribu-
tion curves at binding energies in the range of 0.5
→1.0 eV. Upon reaching �1 eV below EF the vertical
parts then merge with two LDA-like bands of high intensity.

Similar behavior—namely, small band portions with a
free-electron-like dispersion and high spectral weight near
high-symmetry points of the Brillouin zone—has been ob-
served previously in the insulating compound Sr2CuO2Cl2 by
Pothuizen et al.58 The interpretation given by these authors
was that these are O 2p derived states which do not hybrid-
ize with Cu 3d orbitals due to symmetry—which is why they
appear only at high-symmetry points of the Brillouin zone—
and hence are unaffected by the strong correlations in the
partially filled Cu 3d orbitals. This explains their LDA-like
dispersion and high spectral weight because they are essen-
tially free-electron states.

We believe that an important clue to the interpretation of
the waterfalls is the finding of Inosov et al.64 who showed
that matrix element effects play a crucial role in their obser-
vation and that the missing part of the quasiparticle band
near � can, in fact, be observed with photon energies around
100 eV where the cross section for Cu 3d orbitals becomes
appreciable.65 Moreover, Pan et al.62 found that the water-
falls show the same dependence on photon polarization as
the quasiparticle band itself, indicating that they are also de-
rived from Zhang-Rice singlets �ZRSs�. Moreover finally in
our opinion the crucial clue is the fact that the quasiparticle
band itself cannot be observed near the � point either. While
numerical studies of the Hubbard and t-J model66–68—as
well as the present theory—do indeed predict that the spec-
tral weight of this band is lower by a factor of 2–3 at � as
compared to � �

2 , �
2 �, in experiment there is practically no

more intensity visible. Rather, the spectra show a complete
suppression of spectral weight around � which extends down
to the intense LDA-like bands. Most significantly, however,
the waterfalls appear at very nearly the same momentum
where the quasiparticle band itself becomes visible.

We conclude that the reason for the vanishing of the qua-
siparticle band near � is “extrinsic” to the t-J or single-band
Hubbard model, namely, the special combination of phases
for the O 2p� orbitals in the bonding combination which
hybridizes with a given Cu 3dx2−y2 orbital in the ZRS. In the
framework of a simple three-step model of photoemission
for photoemission the effect that we seek comes from the
matrix element for the dipole transition from O 2p states into
the final state—which we take to be a plane wave with mo-
mentum k for simplicity. For definiteness we introduce the
dipole matrix element,

� · v
 =
1

�V
� dre−ik·r� · r�
�r� , �18�

where � denotes the polarization vector of the light, V is the
volume of the crystal, and �
�r� is the wave function of an
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FIG. 9. Spectral density for hole creation at half-filling along
high-symmetry lines in the Brillouin zone. Calculated with �right�
and without �left� the contribution from charge fluctuations.
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O 2p orbital at the origin and 
� 	x ,y
. The matrix element
for a dipole transition from the bonding combination of
O 2p� oxygen orbitals around a given Cu site j,

Pj,� =
1

2
�pj+x̂/2,� − pj−x̂/2,� − pj+ŷ/2,� + pj−ŷ/2,�� , �19�

into the plane-wave state is

mZRS = e−ik·Rji�vy sin� ky

2
� − vx sin� kx

2
�� · � . �20�

Note that the k dependence of the expression in square
brackets comes solely from the interplay between the phase
factors eik·r on the four oxygen neighbors of atom j and the
relative phases of the orbitals in Eq. �19�. Namely, any two
oxygen orbitals whose position in real space differs by one
lattice spacing have a relative phase of �−1� in the ZRS—
which would correspond to momentum �� ,��. This k depen-
dence is therefore completely independent of details in the
computation of the matrix elements v
 and therefore in par-
ticular independent of the photon polarization. Moreover it
would stay the same if a more realistic final-state wave func-
tion was used as long as this is a Bloch state with momentum
k. It now can be seen that mZRS→0 as k→ �2n� ,2m��.
Unlike the argument based on the dipole selection rule which
was discussed by Ronning et al.57 expression �20� thus ex-
plains why the quasiparticle band has vanishing intensity not
only at � but also at all equivalent points in higher Brillouin
zones as well.

The above considerations apply only to hole creation on
oxygen. For photon energies around 20 eV it is well known,
however, that the cross section for hole creation on oxygen is
considerably larger than for hole creation in transition-metal
3d orbitals.65 Moreover, starting from a d9 state one would
reach a d8 state. The latter is high in energy and hence has
small weight in the ZRS and moreover the resulting spectral
weight would be spread over several eV due to the multiplet
splitting of d8 so that the corresponding matrix element cer-
tainly is small. A d9 final state could be produced by photo-
emission from d10 state but this state also is high in energy
and therefore has small weight in the ground state. In any
way the contribution of hole creation on Cu is strongly sup-
pressed. For larger photon energies—around 100 eV—
Inosov et al.64 could indeed resolve the quasiparticle band
but only at �2� ,0�. Obviously the larger photoemission cross
section and the nonvalidity of the dipole selection rule at this
momentum make it possible to see intensity from photoholes
in Cu 3dx2−y2 orbitals. Clear evidence that the intensity seen
there is due to photohole creation on Cu is also provided by
the strong variation of intensity around the Cu 3p→Cu 3d
threshold which is being used routinely to identify transition-
metal 3d states in other transition-metal oxides.69

One might then ask where the spectral weight correspond-
ing to hole creation on oxygen goes at �. The answer is that
this spectral weight is concentrated in the LDA-like bands
which are observed around the � point at approximately 1.5
eV below the Fermi energy. Due to parity the “antibonding
band” of Cu 3dx2−y2 and O 2p� orbitals actually has pure
oxygen character at �. If a Bloch state of O 2p orbitals is

created with momentum �0,0� this cannot couple to the ZRS
singlet see Eq. �20�� but has overlap 1 with these bandlike
states. This is the same reasoning as given by Pothuizen et
al.58 for the 1 eV peaks in Sr2CuO2Cl2. The spectral weight
transfer from the quasiparticle band to the 1 eV peaks at � as
observed by Ronning et al.57 thus is strong evidence for the
ZRS character of the quasiparticle band.

These leave the question as to what is the interpretation of
the waterfalls. The above considerations suggest that these
are simply the higher lying SP bands seen in Fig. 9. These
bands are likely to be strongly broadened due to interaction
with spin excitations and possible also phonons although one
of them may have been resolved by Ronning et al.57 �see Fig.
5�. Near � the spectral weight of these bands disappears
because they are also “t-J derived” and the matrix element
for creation of a ZRS vanishes �see Fig. 10�. As one moves
away from � the matrix element for creation of a ZRS in-
creases but—as can be seen in Fig. 9—the spectral weight of
these excited SP bands now quickly decreases. It follows that
the spectral weight of these bands must go through a maxi-
mum as one moves away from � and this is our interpreta-
tion of the waterfalls: a number of essentially incoherent
states which have a “window of visibility” in a narrow range
of momenta around � �

4 , �
4 � and this window of visibility is

seen as the hump in the momentum distribution curves.
Since the suppression of these states near � is governed by
the same matrix element of the ZRS as the quasiparticle band
itself, it is moreover clear that this window of visibility
“opens” precisely in the same range of k where the quasipar-
ticle band itself becomes visible—hence the apparent down-
ward bending and the waterfall-like appearance of the spec-
tra.

A more quantitative description of this phenomenon obvi-
ously would have to start out from a three-band model so as

ZRS suppressed

(0,0) (π,π)

Free electron band

Waterfall

(0,0) (π,π)

Free electron band

‘Window
of visibility’

FIG. 10. Interpretation of the waterfall phenomenon. Around �
photoholes on oxygen do not couple to the ZRS whence all t-J
derived states have no spectral weight. Photoholes created with this
momentum on oxygen instead propagate as �nearly� free-electron
states which do not hybridize with the correlated Cu d orbitals.
Moving away from � the t-J bands become visible but lose spectral
weight as well �dashed potions�. The nearly free-electron states
cease to exist because they now have appreciable hybridization with
the correlated Cu d orbitals. The higher lying SP bands thus are
visible only in a small window in k space, i.e., the waterfalls.
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to describe both the coupling of a photohole to a ZRS and
the existence of the nearly free-electron states at high-
symmetry points. This is out of the scope of the present
paper and we therefore make no attempt for a quantitative
discussion. There have been a number of attempts to explain
the waterfall phenomenon within the t-J model.51,70 How-
ever, as was already noted, the experimental spectra show a
complete suppression of spectral weight around � which ex-
tends downward all the way to the intense LDA-like bands.
This behavior is not reproduced by t-J model calculations
which show spectral weight—corresponding to the higher
lying bands in Fig. 9—at too low binding energy. Moreover,
the LDA-like dispersion of the high-intensity parts near � is
not really reproduced

VI. OPTICAL CONDUCTIVITY

Finally we turn to a discussion of the optical conductivity
thereby using the results of the simplified calculation which
took into account only the lowest �m=1� state for each sym-
metry o. As is the case for atomic wave functions the s- and
d-like SP states on one hand and the p-like SP states on the
other have opposite parity and hence can have nonvanishing
matrix elements of the current operator in between them. If
we assume again that the quasiparticle band is filled with
holes upon doping—which would occupy momenta around
� �

2 , �
2 �—we thus expect optical interband transitions �as indi-

cated in Fig. 5� which should be observable in the finite-
frequency optical response. This is defined as

���q = 0,�� = �
n�0

1

�
���n�j��q = 0���0��2�� − �En − E0�� ,

where ��n� �En� denotes the nth eigenstate �eigenenergy� of
the system �in particular, n=0 denotes the ground state�.
Also, j� with �=x ,y denotes a component of the current
operator,

j�q� = i�
m,n

tmneiq·�Rm+Rn�/2Rm − Rn�ĉm,�
† ĉn,�. �21�

Assuming a filling of the quasiparticle band we approximate
this by

����� = 2�
k

�
l=1

3
1

�
���l�k��j���1�k���2nk

��	� − El�k� − E1�k��
 , �22�

where nk denotes the hole occupation of the quasiparticle
�l=1� band. To evaluate this we need matrix elements of the
current operator between the localized SP states Eq. �2��:
�	i

�j��	i
�� with = �o ,m��. The main contributions to this

matrix element are shown in Fig. 11. Starting from a bare
hole—the “string of length 0”—the current operator jy gen-
erates two strings of length 1 but with opposite sign. These
two string states thus have precisely the right sign to couple
to a py-like SP state �see the sign convention in Fig. 2�. From
this and similar processes we obtain the matrix element,

�	i
�p�,0��j��	i

�s�,0� = 2i��
�=0


�
�+1� − �
�=1


��
�+1� . �23�

All matrix elements generated in a similar way and involving
SPs of different symmetries or hopping at longer distances
have been listed in Appendix B. The resulting optical con-
ductivity at a hole concentration of 10% is shown in Fig. 12.
While the higher lying bands with p character have small
spectral weight and hence are difficult to observe in ARPES,
they dominate the optical conductivity. We note that the
present interpretation of the optical conductivity is consistent
with that of Refs. 34 and 43. One may expect that the excited
levels of the trapped hole—or “internal degrees of freedom”
of the SP quasiparticles—are also seen in the dynamical den-
sity correlation function. Vojta and Becker34 calculated the
dynamical density correlation function in a string framework
similar to the one used by Bonča et al.47 and obtained con-
vincing agreement with exact diagonalization results. Within
our approach one can naturally explain the distribution and
spreading of the spectral intensity over a wide energy range,
which has been observed in experiments.71,72 Due to the Bril-
louin folding in the AF state the center of the hole pocket at
�� /2,� /2� is a high-symmetry point. s, d, and p SP states do
not mix with each other exactly at this point. Thus, the tran-
sitions with similar intensity occur in the weakly doped sys-
tem between the lowest predominantly s like and the first and
the third predominantly p-like bands. Wider spreading of the
high-intensity region at higher energies can be attributed to
the admixture of p-wave SPs to the lowest band and transi-
tion to the predominantly d-wave second excited band.

i i i

(a) (b) (c)

FIG. 11. �Color online� Application of the current operator jy to
a bare hole in the Néel state �a� creates two strings of length 1 �b�
and �c�� with opposite signs.
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FIG. 12. Optical conductivity at 10% hole concentration.
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VII. DISCUSSION AND CONCLUSIONS

In summary we have presented a theory for spin-polaron-
like quasiparticles. The basic idea is that a hole in an antifer-
romagnetically ordered “spin background” is self-trapped
which actually requires only short-range antiferromagnetic
order. This will lead to a hierarchy of localized states which
may also realize different irreducible representations of C4v.
Since the Heisenberg exchange and the t� and t� terms have
matrix elements between such self-trapped states on neigh-
boring sites an LCAO-like description emerges where the
role of the atomic or Wannier functions is played by the
levels of the self-trapped hole. This leads to a multiband
structure for the doped holes with the lowest of these being
the familiar quasiparticle band observed in the insulating
compounds and discussed extensively in the literature. Here
we take the point of view that the simplest description for the
underdoped compounds is holes being filled into this quasi-
particle band. The fact that these self-trapped states extend
over several unit cells in real space necessarily implies that
they have an ARPES form factor which varies within the first
Brillouin zone—hence the strong variation of the photoemis-
sion intensity of the quasiparticle band as a function of k
which explains the remnant Fermi surface and the Fermi arcs
seen in ARPES. Moreover, the pseudogap becomes a trivial-
ity within this picture. One of the higher bands of the effec-
tive LCAO Hamiltonian may have been observed in ARPES
in the insulator Ca2CuO2Cl2 and optical transitions between
the resulting bands may explain the mid-infrared band in
optical spectroscopy. There are probably complications due
to lattice polaron effects but here we neglect these although
the simplicity of the present calculation—which never need
matrices to more than 10�10—would certainly allow to
treat such effects as well.

The main drawback of the present theory is the use of a
spin background with antiferromagnetic order—which
clearly is not realized in doped materials of interest. On the
other hand all processes by which the hole propagates in-
volve only spins in its immediate neighborhood. One may
therefore expect that very similar processes would occur in a
spin background with only short-range antiferromagnetic
correlations so that much of the present theory should apply
in this case as well. The most important effect we are miss-
ing with the present calculation is the closing of the
pseudogap with both increasing temperature and increasing
doping. Since this closing implies that the dispersion actually
approaches that for the “pure” t-J model—i.e., without t� and
t� terms—this effect could be described by an effective
downward renormalization of the t� and t� terms. The mecha-
nism may be the decrease in spin correlations: in the Néel
state the t� and t� terms can transport a hole “completely
coherent,” i.e., without creating a spin excitation. As the
spin-correlation length decreases and reaches the “range” of
these terms in real space—two lattice spacings—the t� and t�
will increasingly generate spin excitations when transporting
a hole so that they change their net effect from coherent hole
transport to “excitation generating” hole transport.
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APPENDIX A: SPIN-POLARON MODEL

We first derive the equations for the coefficients 
�o,m��l�
in Eq. �2�, thereby assuming Eq. �3�. We denote by ���� the
sum of all string states with � inverted spins, each multiplied
by the proper phase factors according in Fig. 2. On a Bethe
lattice the number of such states is n�= f �o�z�z−1��−1, where
f �o�=1 for o=s ,dx2−y2 and f �o�=1 /2 for o= px , py. Our nor-
malized basis states are ���=n�

−1/2���� which obey

�� + 1�Ht��� = t�n�+1

n�

because each of the n�+1 basis string states in the bra is
generated exactly once from a state in the ket and the matrix
element for hopping of a hole is positive. The states Eq. �2��
can be written as

�	i� = �
�

����� ,

with ��=n�
1/2
�

�o,m�. Performing the variational procedure—
thereby using Eq. �1�—we obtain the following set of equa-
tions:

E0�0 + �zt�1 = E�0, �A1�

E1�1 + �zt�0 + �z − 1t�2 = E�1, �A2�

E��� + �z − 1t���−1 + ��+1� = E��. �A3�

For o= px , py ,dx2−y2 one has to set �0=0 and discard the first
equation. After introducing a cutoff for � these equations can
be solved numerically.

Now we proceed to analyze with some sample processes
which give rise to nonvanishing matrix elements Eqs. �10�
and �11��. The hopping integral t is the highest energy scale
among all model parameters t, t�, t�, and J. On the other
hand, the exchange energy grows fast with the number of
fluctuations. That number is directly related to the length of
paths Pi. This mechanism is responsible for the tendency
toward hole confinement and the construction of SPs also
relies on it. Quasiparticle deconfinement occurs due to pro-
cesses which are mediated by hopping to second and third
NN and by the action of the XY term in the exchange inter-
action. Only string states �Pi� with low number fluctuations
can be involved in those processes at the low-energy scale.
Thus, in order to find matrix elements Eq. �10�� we need to
determine coupling between short-string states �Pi�. That
coupling is induced by the perturbation part H1 which by
definition contains terms related to hopping to second and
third NN sites and which also contains the XY term. We
restrict our considerations to processes involving string states
�Pi� which are related to paths not longer than two lattice
spacings for s-wave SPs and to paths not longer than three
lattice spacings for SPs with lower symmetry. In the latter
case we take into account longer strings because the zero-
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length string state �Pi� does not contribute to the wave func-
tion Eq. �2�� of SPs with lower symmetry and thus the
weight is shifted to states representing longer paths. The ab-
solute values of prefactors 
� and 
�� corresponding to low-
est eigenstates of Eqs. �A1�–�A3� rapidly decrease with the
string length � which additionally justifies the restriction of
our considerations to strings with short length. At the level of
the approximation which we apply, there exist more than 20
categories of processes which contribute to Eqs. �10� and
�11�. The differences between different categories concern
the underlying mechanisms or the geometry of involved
strings. Since the mechanisms which give rise to coupling
between s-wave SPs were discussed in detail in the past,40,44

here we will mainly concentrate on the issue how the lower-
ing of SP symmetry influences the coupling between SPs and
we will discuss representative examples of processes which
give rise to the hybridization between SPs. In order to keep
the Hilbert space as small as possible we consider at first the
low-energy sector and analyze only lowest SP states with
given symmetry.

For example, Figs. 13�a� and 13�b� depict a process dur-
ing which a SP polaron is shifted to a second NN site. �a�
represents a string state �Pi� which is a component of the
wave function �2� of a SP created at site i. This state has been
obtained by creating a bare hole in the Néel state. It appears
with the prefactor 
0 in superposition �2� defining the s-wave
SP at site i. With the same prefactor appears the string state
depicted in Fig. 13�b�. It is a component of the s-wave SP
created at site j. Since string states �a� and �b� are coupled by
the second NN hopping term a nonvanishing matrix element
Eq. �10�� between s-wave SPs is generated. The related con-
tribution to that matrix element is given by

�T ji
�s,0��s,0�� � �TRj−Ri

�ss� = �ss
�1� = t�
0

2. �A4�

Within a convention for presenting matrix elements this con-
tribution can be written as

ss, x̂ + ŷ,�ss
�1�:C4. �A5�

The presence of the group symbol C4 in Eq. �A5� means that
additional contributions to Eq. �10� can obtained by applying
to Eq. �A4� elements of C4 different than identity. Since 
0�
�0 states depicted in Figs. 13�a� and 13�b� do not contribute
to SP wave functions Eq. �2�� with lower symmetry. Thus
the above discussed lowest-order process does not generate
hybridization in which such SPs are involved. By process
order we understand, in terms of the conventional perturba-
tion theory, the total number of Hamiltonian actions neces-
sary to transform a state representing a bare hole created in
the AF background into another such state. It is clear that this
parameter is related to the sum of lengths for paths involved
in a given process.

The origin of the formula for the integral �ss
�1� in Eq. �A4�

is rather obvious. It is the product of prefactors which appear
by string states depicted in Figs. 13�a� and 13�b� in the defi-
nition for the wave functions of SPs at sites i and j. t� is the
integral which appears as a prefactor in the hopping term
coupling those string states. The same scheme can be applied
to deduce the form of hopping integrals which appear in

further terms in TR
�oo��.

Figures 13�c� and 13�d� depict a process which gives rise
to corrections to SP eigenenergies E1 and E1� of SPs and
amendments to the diagonal term in Eq. �8�. Those correc-
tions originate with the coupling between different string
states generated by the hopping to second NN sites. Those
string states contribute to the wave functions of SPs created
at the site i. The paths Pi corresponding to string states Pi
depicted in Figs. 13�b� and 13�c� have been shown in Figs.
14�a� and 14�b�, respectively. From now on we will also use
the latter form of diagrams to represent string states. The
same mechanism as discussed above works for pairs of
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FIG. 13. �Color online� �a� and �b�� A process which gives rise
to the shift of the s-wave SP to a second NN site. �c� and �d�� A
process which generates corrections to eigenenergies E1 and E1� of
SPs.
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FIG. 14. �a� and �b�� A different representation of string states
depicted in Figs. 13�c� and 13�d�, respectively. �c� A string state
contributing to a process which involves hopping to second NN
sites. That process gives rise to SP shifts along plaquette diagonals.
�d� A string state contributing to a process which involves hopping
to NN sites.
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longer strings which have identical forms with the exception
of hole positions at ends of them. The corrections to energies
of s-wave, d-wave, and p-wave SPs are �ss

�13�, �dd
�13�, and �pp

�13�,
respectively. Their explicit form can be found below. Due to
point-group properties the above discussed process does not
generate the coupling between SPs with different symme-
tries.

During another process which also involves strings of
length two lattice spacings the action of hopping to second
NN sites generates shifts of SPs between second NN sites.
Surprisingly, SPs are shifted now in the direction opposite to
the direction of the bare hole move. The nature of that para-
dox can be understood by analyzing Figs. 14�b� and 14�c�.
The action of the second NN hoping term on the string state
Fig. 14�b��, which contributes to the SP created at site i,
shifts the hole at the end of that string from site j to site i and
generates a string state Fig. 14�c��, which contributes to the
SP created at site j. That process gives rise to a new contri-

bution to TR
�oo��,

ss, x̂ + ŷ,�ss
�15�;dd, x̂ + ŷ,�dd

�15�,

pypx, x̂ + ŷ,�pp
�15�:C4v, �A6�

pys, x̂ + ŷ,�ps
�15�;pyd, x̂ + ŷ,�pd

�15�:C4v · H.c. �A7�

The presence of the group symbol C4v means as before that
contributions �A6� and �A7� should be supplemented by ma-
trix elements obtained by applying to the existing elements
all group elements and in the case of the second line also
elements obtained by applying the Hermitian conjugation.
The process depicted in Figs. 14�b� and 14�c� gives rise to
the hybridization of SPs with different symmetries because
apart from the case of coupling between s-wave and d-wave
SPs no selection rule forbids it and also because string states
depicted in both Figs. 14�b� and 14�c� can be components of
wave functions for SPs of arbitrary symmetry. The hopping
integrals �oo�

�15� as usually are given by products of the bare
hopping integral t� and of prefactors with which string states
depicted in Figs. 14�b� and 14�c� appear in the definition of
SPs. The existence of negative signs in some of integrals
�oo�

�15� originates with the fact that due to symmetry properties
of some SPs such signs are also contained in prefactors of
string states in sums Eq. �2�� defining those SPs.

After discussing some representative examples of SP cou-
pling generated by hopping to second NN sites we skip the
discussion of analogous processes mediated by hopping to
third NN sites, because their mechanisms are similar, and
analyze a high-order process which involves hopping to NN
sites. That process has been neglected during the construc-
tion SPs because a long-string state participates in it. The NN
hopping operator, by shifting the hole at the end of the string
depicted in Fig. 14�d� from site n to site j, generates the
string state depicted in Fig. 14�b�, which gives rise to a new
contribution to the coupling between SPs created at sites i
and j. For the sake of clarity, we only additionally mention
briefly that Fig. 14�d� represents a string state in which
flipped spins occupy sites j, l, and i and the hole occupies
site n. It is clear that the same mechanism generates the

hopping of SPs between all second NN sites. Depending on
the symmetry of the initial and final SP states, related hop-
ping integrals are given by �sd

�21�, �dd
�21�, �pd

�21�, �sp
�21�, and �pp

�21�.
The analysis of Hamiltonian terms induced by the ex-

change interaction can be performed along similar lines. We
start with a necessary correction to the Ising part of the ex-
change energy. When we have been constructing the
Schrödinger equations Eqs. �A1�–�A3�� for wave functions
Eq. �2�� of SPs, we have assumed that the Ising contribution
depends on the length of strings but does not depend on their
geometry. That assumption is true for short strings, but for
longer strings there exists some exceptions from that rule.
For example, by inspecting the spin structure of the string
state depicted Fig. 14�d�, we see that one broken bond has
been saved for that state in comparison with strings which
have the same length and have the starting and ending points
which are not NNs. That fact gives rise to the decrease by
J /2 of the string-state energy and to corrections to eigenen-
ergies of d-wave and p-wave SPs. Those corrections are
given by �dd

�19� and �pp
�19�, respectively. Since the amendments

are related to strings of length at least three lattice spacings
we neglect them in the case of the s-wave SP because the
weight of related string states in the wave function of the
s-wave SP is small.

Also the best known in literature process which deter-
mines to great extent the overall shape of the single-particle
energy dispersion at the low-energy scale gives rise to the
hybridization between SPs with different symmetries. That
process has been shown in Figs. 15�a� and 15�b�. Flipping
spins at sites l and m in the string state depicted in Fig. 15�a�
by the transverse part of the exchange energy gives rise to
the string state depicted in Fig. 15�b� and to the hybridization
between SPs at sites i and m. In that kind of hybridization the
s-wave state should be involved because the state shown in
Fig. 15�a� represents a bare hole created in the Néel state. As

i
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l i
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l

i ml i ml

(a) (b)

(c) (d)

FIG. 15. �a� and �b�� A low-order process which involves the
action of the transverse part of the exchange term and gives rise to
the hybridization of SPs with different symmetry. �c� and �d��
String states involved in a process mediated by the XY part of the
exchange term and resulting in a correction to the eigenenergy of
the d-wave SP.
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we have shown before, such string states do not contribute to
wave functions of SPs with lower symmetry. The hopping
integrals which appear at terms coupling an s-wave SP with
an s-wave, a d-wave, and a p-wave SP located at a third NN
site are given by �ss

�3�, �ds
�3�, and �ps

�3�, respectively.
A similar mechanism gives rise to a correction to the

eigenenergy of a d-wave SP. The action of the XY term flips
spins in the string state depicted in Fig. 15�c� at sites n, j and
creates the string state shown in Fig. 15�d�. Due to the fact
that both string states contribute to the wave functions Eq.
�2�� of SPs created at the same site i and due to standard

selection rules, the contribution to TR
�oo�� originating with the

above discussed process must be diagonal. For this reason,
p-wave states cannot contribute to the related new matrix

elements TR
�oo�� because the process depicted in Figs. 15�c�

and 15�d� involves string states which contribute to different
px-wave and py-wave SPs. Since the length of the string de-
picted in Fig. 15�d� is three lattice spacings we neglect the
correction to the eigenenergy of the s-wave SP because we
expect that it is small. The correction to the eigenenergy of
the d-wave SP is −�dd

�11�. It also contains contributions related
to the coupling, in the same way, between longer-string
states obtained by letting holes at the ends of strings in Figs.
15�c� and 15�d� to hop further along identical paths.

During the construction of SPs we have been assuming
that wave functions of SPs at different sites are orthogonal
which turns out not to be an exactly true assumption. On the
other hand the overlap between SPs is rather small because it
originates with the overlap of nominally different string
states related with paths of relatively long length. Such string
states have been depicted in Figs. 16�a� and 16�b�. Both Figs.
16�a� and 16�b� actually represent the same state which con-
sists of a hole at site j and fluctuations at sites n, i, and l
created in the Néel state. The generated in this way overlap
between different SPs also gives rise to a new contribution in
the Hamilton operator,

pyd, x̂ + ŷ,E1��pd
�1�:C4v · H.c . , �A8�

dd, x̂ + ŷ,E1��dd
�1�;pypx, x̂ + ŷ,E1��pp

�1�:C4v. �A9�

The analysis of other processes which give rise to new ele-

ments of TR
�oo�� is rather straightforward and similar to the

analysis of previously discussed processes. Thus we do not

discuss the remaining contributions to TR
�oo�� one by one.

Finally, we list here matrix elements which determine the
form of the Hamilton matrix Eqs. �8� and �10��,

ss,0,E1;dd,0,E1�;pxpx,0,E1�;pypy,0,E1�, �A10�

ss,0,�ss
�6�;ss, x̂ + ŷ,�ss

�1�;ss,2x̂,�ss;�2,0�
��� ,

dd,0,�dd
�6�;dd,2x̂,�dd

�14�;pxpx,0,�pp
�6�,

pxpx,2x̂,�pp
�14�:C4, �A11�

ss,00,�ss
�13�;ss,2x̂,�ss

�3�;ds,2x̂,�ds;�2,0�
��� ,

dd,0,�dd
�13�;dd,2x̂,�dd

�7�;dpx,2x̂,�dp
�7�,

pxs,2x̂,�pxs;�2,0�
��� ;pxd,2x̂,�pxd;�2,0�

��� ,

pxpx,0,�pp
�13�;pxpx,2x̂,�pp

�7�:C4 · H.c . , �A12�

ss, x̂ + ŷ,�ss
�3�;sd, x̂ + ŷ,�sd

�21�,

spx, x̂ + ŷ,�sp
�21�;dd, x̂ + ŷ,�dd;�1,1�

��� ,

dd,0,− �dd
�11�;dd,2x̂,− �dd

�7�,

dpx, x̂ + ŷ,�dpx;�1,1�
��� ;pxd, x̂ + ŷ,�pxd;�1,1�

��� ,

pxd,2x̂,�pd
�7�;pxpx, x̂ + ŷ,�pxpx;�1,1�

��� ,

pys, x̂ + ŷ,�pys;�1,1�
��� ;pyd, x̂ + ŷ,�pyd;�1,1�

��� ,

pypx, x̂ + ŷ,�pypx;�1,1�
��� :C4v · H.c . , �A13�

ss,0,�ss;�0,0�
��� ;ss, x̂ + ŷ,�ss

�15�,

dd,0,�dd;�0,0�
��� ;dd, x̂ + ŷ,�dd;�1,1�

��� ,

pxpx,0,�pxpx;�0,0�
��� ;pxpx, x̂ + ŷ,�pp

�23�,

pypx, x̂ + ŷ,�pypx;�1,1�
��� :C4v, �A14�

pypx, x̂ + ŷ,�pp
�21�:C2v · H.c. �A15�

and of the overlap matrix Eqs. �9� and �11��,

pyd, x̂ + ŷ,�pd
�1�:C4v · H.c . , �A16�

dd, x̂ + ŷ,�dd
�1�;pypx, x̂ + ŷ,�pp

�1�:C4v, �A17�

where

�ss;�2,0�
��� = �ss

�2� + �ss
�14�, �A18�

�ds;�2,0�
��� = �ds

�3� + �ds
�14�, �A19�

i

jn

l i

jn

l

(a) (b)

FIG. 16. �a� and �b�� Spuriously different string states which
are actually identical, which gives rise to the overlap between SPs
created at sites n and l.
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�pxs;�2,0�
��� = �ps

�3� + �ps
�14�, �A20�

�pxd;�2,0�
��� = �pd

�7� + �pd
�14�, �A21�

�dd;�1,1�
��� = �dd

�11� + �dd
�17� + �dd

�18�, �A22�

�dpx;�1,1�
��� = �pd

�7� − �pd
�11� + �pd

�17� + �pd
�18�, �A23�

�pxd;�1,1�
��� = �pd

�7� + �pd
�11� + �pd

�23�, �A24�

�pxpx;�1,1�
��� = �pp

�7� + �pp
�11�, �A25�

�pys;�1,1�
��� = �ps

�3� + �ps
�15�, �A26�

�pyd;�1,1�
��� = �pd

�7� + �pd
�15� + �pd

�17� + �pd
�18� + �E1� − J/2��pd

�1� + �pd
�21�,

�A27�

�pypx;�1,1�
��� = �pp

�7� + �pp
�17� + �pp

�18�, �A28�

�ss;�0,0�
��� = �ss

�5� + �ss
�16�, �A29�

�dd;�0,0�
��� = �dd

�5� + �dd
�16� + �dd

�19� + �dd
�22�, �A30�

�dd;�1,1�
��� = �dd

�15� + �E1� − J/2��dd
�1� + �dd

�21� − �dd
�22�, �A31�

�pxpx;�0,0�
��� = �pp

�16� + �pp
�19�, �A32�

�pypx;�1,1�
��� = �pp

�15� + �E1� − J/2��pp
�1�, �A33�

�ss
�1� = t�
0

2, �A34�

�ss
�2� = t�
0

2, �A35�

�ss
�3� =

J

2 �
�=0

3�
�
�+2,

�ds
�3� =

J

4 �
�=0

3�
�
�+2� ,

�ps
�3� = −

J

2�2
�
�=0

3�
�
�+2� , �A36�

�ss
�5� = t�
1

2,�dd
�5� = −

t�

4
�
1��

2, �A37�

�ss
�6� = t�
1

2,�dd
�6� =

t�

4
�
1��

2,

�pp
�6� = −

t�

2
�
1��

2, �A38�

�dd
�7� =

J

8 �
�=1

3�−1
��
�+2� ,

�pd
�7� = −

J

4�2
�
�=1

3�−1
��
�+2� ,

�pp
�7� =

J

4 �
�=1

3�−1
��
�+2� , �A39�

�dd
�11� =

J

8�
1�
3� + 2�
�=2

3�−2
��
�+2� � ,

�pd
�11� = −

J

4�2�
1�
3� + 2�
�=2

3�−2
��
�+2� � ,

�pp
�11� = −

J

4�
1�
3� + 2�
�=2

3�−2
��
�+2� � , �A40�

�ss
�13� = 2t��

�=2
3�−2
�

2 ,�dd
�13� =

t�

2 �
�=2

3�−2�
�� �2,

�pp
�13� = t��

�=2
3�−2�
�� �2, �A41�

�ss
�14� = t�
2

2,�ds
�14� =

t�

2

2
2�,

�ps
�14� = −

t
�2


2
2�,�dd
�14� =

t�

4
�
2��

2,

�pd
�14� = −

t�

2�2
�
2��

2,�pp
�14� = −

t�

2
�
2��

2, �A42�

�ss
�15� = t�
2

2,�ps
�15� = −

t�
�2


2
2�,

�dd
�15� = −

t�

4
�
2��

2,�pd
�15� = −

t�

2�2
�
2��

2,

�pp
�15� = −

t�

2
�
2��

2, �A43�

�ss
�16� = t��

�=2
3�−2
�

2 ,�dd
�16� =

t�

4 �
�=2

3�−2�
�� �2,

�pp
�16� =

t�

2 �
�=2

3�−2�
�� �2, �A44�

�dd
�17� = −

t�

4
�
3��

2,�pd
�17� = −

t�

2�2
�
3��

2,
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�pp
�17� = −

t�

2
�
3��

2, �A45�

�dd
�18� = −

t�

4
�
3��

2,�pd
�18� = −

t�

2�2
�
3��

2,

�pp
�18� = −

t�

2
�
3��

2, �A46�

�dd
�19� = −

J

8��
3��
2 + 2�

�=4
3�−4�
�� �2� ,

�pp
�19� = −

J

4��
3��
2 + 2�

�=4
3�−4�
�� �2� , �A47�

�sd
�21� =

t

2

3�
2,�dd

�21� = −
t

4

3�
2�,

�pd
�21� = −

t

2�2

3�
2�,�sp

�21� =
t

�2

3�
2,

�pp
�21� = −

t

2

3�
2�, �A48�

�dd
�22� = −

t�

4
�
3��

2, �A49�

�pd
�23� = −

t�

2�2
�
3��

2,�pp
�23� = −

t�

2
�
3��

2, �A50�

and

�dd
�1� = −

�
3��
2 + 2��=4

3�−4�
�� �2

4
,

�pd
�1� = −

�
3��
2 + 2��=4

3�−4�
�� �2

2�2
,

�pp
�1� = −

�
3��
2 + 2��=4

3�−4�
�� �2

2
. �A51�

APPENDIX B: OPTICAL CONDUCTIVITY OF DOPED
ANTIFERROMAGNETS

The optical spectrum evaluated by us is determined by
following contributions to matrix elements:

��n��	Ri

�o�,0��jx�	R=0
�o�,0��so�,o

�n� �Ri�, where n labels different con-
tributions,

spx,s
�1� �0� = − 2it�

�=0

�
�+1� /�2,

ss,px

�1� �0� = − 2it�
�=1


��
�+1/�2,

sd,px

�1� �0� = − 2it�
�=1


��
�+1� /�2�2� ,

spx,d
�1� �0� = sd,px

�1� �0� , �B1�

spx,s
�2� �0� = 2it�

�=2

�
�−1� /�2,

ss,px

�2� �0� = 2it�
�=1


��
�−1/�2,

sd,px

�2� �0� = − 2it�
�=2


��
�−1� /�2�2� ,

spx,d
�2� �0� = sd,px

�2� �0� , �B2�

ss,s
�3��x̂ � ŷ� = − it�
0

2, �B3�

ss,s
�4��− x̂ � ŷ� = − ss,s

�3��x̂ + ŷ� , �B4�

ss,px

�5� �0� = 4it�
1�
1/�2,

sd,px

�5� �0� = − 4it��
1��
2/�2�2� , �B5�

spx,s
�6� �0� = − ss,px

�5� �0� ,

spx,d
�6� �0� = sd,px

�5� �0� , �B6�

ss,s
�7��2x̂� = − 2it�
0

2,

ss,s
�7��− 2x̂� = − ss,s

�7��2x̂� , �B7�

spx,s
�8� �0� = − 4it�
1
1�/�2,

ss,px

�8� �0� = − spx,s
�8� �0� ,

sd,px

�8� �0� = 4it��
1��
2/�2�2� ,

spx,d
�8� �0� = − sd,px

�8� �0� . �B8�

For example, contributions 1 and 2 are related to shortening
and elongating strings by the current operator Fig. 11�,
while contributions 3 and 4 to shifts between next NN sites
Figs. 13�a� and 13�b��. We have considered processes in-
volving strings of length up to two for matrix elements of the
t term in the current operator and up to one for matrix ele-
ments of t� and t� terms.
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